点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:快3官网-快3官网
首页>文化频道>要闻>正文

快3官网-快3官网

来源:快3官网2023-01-17 17:48

  

快3官网

360联合天津智慧城市数字安全研究院发布《全球人工智能安全治理》报告******

  2023年1月10日,360天枢智库、天津智慧城市数字安全研究院、网络空间国际治理研究中心三方联合发布《全球人工智能安全治理》报告,报告站在全球视角的宏观高度纵览、分析和解读人工智能安全治理问题,提出人工智能发展面临十大安全挑战,旨在探索既能发挥人工智能技术效益又能控制其安全风险和负面影响的治理之道,是中国学术界和产业界对人工智能发展与安全的一次思想碰撞与深度探索,对人工智能安全治理具有积极指导意义。

  在人工智能加速智能化变革的同时,针对人工智能的伦理规范、风险框架、以及治理理念和模式的探索成为各国学术界和政策界的重点工作。360首席安全官、天津智慧城市数字安全研究院院长杜跃进称,人工智能作为中、美、欧等国家或地区都在积极发展的关键新兴技术,其在发展过程中所产生的安全挑战也更为复杂多元,世界主要国家和地区已经将安全治理列为各自人工智能战略的优先事项。

  目前,各国普遍关注的人工智能安全问题共十类,包括网络安全问题、企业合规问题、可解释性问题、隐私安全问题、声誉和伦理问题、未来劳动力问题、公平性问题、人身安全问题、社会稳定问题、以及国家安全问题。而以上挑战映射到人工智能的研发和应用过程,又可以划分为人工智能自身安全、衍生安全、以及人工智能赋能安全等核心安全挑战。

  报告显示,作为一种数字技术,人工智能“双刃剑”特征明显,不仅自身存在数字安全威胁和隐患,随着人工智能工程化、场景化、平台化落地不断加快,人工智能安全需求已经超越单纯技术范畴。面对日趋复杂的安全挑战,人工智能安全治理难以一蹴而就,只有在实践中不断摸索,才能将人工智能安全风险遏制在可控范围。

  报告对各国人工智能安全治理模式进行了深入剖析,针对上述问题,报告主要发现:美国流派在人工智能安全治理上采取的手段是在人工智能技术部署、使用与监测的全过程中都进行验证与监管,建立与之配套的规范体系;欧盟流派则更寄希望于运用监管框架与信任体系来对人工智能的安全进行规制,其规制更倾向于人权方向;相较美国与欧盟,中国流派的人工智能安全治理致力于形成内含研发、管理和应用的全流程安全保障体系,涵盖基础框架研制、基本安全原则、供应链管理实践指南、安全服务能力、应用领域的标准研制等各个方面。

  为了避免人类社会发展被技术创新所“反噬”,也就是落入所谓的“科林格里奇困境”,产学研各界以监管和设置可操作性原则为主导,通过治理实践凝聚共识,探索人工智能安全治理的思路与模式。报告详细介绍了业界通用的各类风险治理思路,首先是基于未来风险预防的影响评估模式,其次是基于自主性原则的元监管模式,然后是基于透明追踪的AI系统预警模式。并由此细分出以用户为考虑重点的参与性设计和以政府为主导力量的敏捷治理两条路径。

  在中国,360等多家人工智能龙头企业以自身实践构建行业安全案例,走出了技术赋能、行业规制、平台监测的多种道路。其中,360承建了科技部牵头成立的“安全大脑国家新一代人工智能开放创新平台”建设,集中解决各类人工智能发展问题,引领人工智能安全生态建设。

  作为报告联合发起方,天津智慧城市数字安全研究院依托于新一代人工智能创新发展试验区核心区——中新天津生态城提供的丰富应用场景,紧紧把握新型城市发展规律和机遇,致力于促进人工智能与经济社会发展深度融合,助力打造“智慧城市国家级标杆区”。

  随着数字经济成为改变全球竞争格局的关键力量,人工智能产业将得到更大发展。同时,人工智能安全治理也将得到全世界的关注和推动,《全球人工智能安全治理》报告作为相关领域的权威论著,也将为人工智能产业的健康发展贡献一份重要的力量。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 今天起世园会开展啦!九图教你辨别常见花卉

  • 周一在岸人民币对美元收报6.7350 涨31个基点

独家策划

推荐阅读
快3官网《创新创业创造云讲堂》第四讲上线
2024-01-16
快3官网刘诗诗:小朋友超级可爱
2023-07-19
快3官网最新最火小说排行榜,原创出版畅销一网打尽
2023-12-29
快3官网她是全世界最著名的第三者:耻辱当然不是奖牌,但它应是一场革命
2023-08-26
快3官网《往日不再》首日补丁24GB
2023-06-04
快3官网交通运输部:取消高速公路省界收费站方案将出台
2024-04-27
快3官网豪出新境界 宝马xDrive 40i M运动套装
2024-04-02
快3官网菲律宾发现新人类物种:距今超5万年,疑似人类近亲
2023-10-15
快3官网一个很有本事的人:曹操
2023-10-23
快3官网该给百天宝宝牙齿补充氟化物?
2024-04-19
快3官网高速出现这4项都是你责任
2023-07-05
快3官网焚烧圆明园的除英军还有这些"家贼"
2023-07-15
快3官网2019第五套人民币8月发行
2023-09-21
快3官网欧文准三双绿军22分大胜雄鹿1-0
2023-06-23
快3官网 若全球爆发战争 30年没打仗的中国能否一战?
2023-08-26
快3官网故宫斋宫佛像展,花开见佛
2023-06-26
快3官网 272名工作人员被累死!印尼大选1.93亿选票全靠人工数
2023-06-13
快3官网猫咪唇膏用成海豹唇膏
2023-07-01
快3官网《风中有朵雨做的云》
2023-06-26
快3官网增长肌肉不只靠力量训练 这10种食物也可以
2023-09-30
快3官网一批股票一季度亏光去年全年盈利 多只翻倍股在列
2023-11-10
快3官网十亿遗产:我的人生赢家路
2023-10-18
快3官网 【17:30直播】KPL春季赛:GK VS WE
2023-08-29
快3官网整体供应同环比走高,武汉收金逾409亿领跑
2023-08-09
加载更多
快3官网地图